Electric Vehicles May Drive a Lithium Supply Crunch

Electric Vehicles May Drive a Lithium Supply Crunch

A carbon-free future “will require many millions of batteries, both to drive electric vehicles and to store wind and solar power on the grid,” reports IEEE Spectrum. Unfortunately, today’s battery chemistries “mostly rely on lithium — a metal that could soon face a global supply crunch.”

Recently, Rystad Energy projected a “serious lithium supply deficit” in 2027 as mining capacity lags behind the EV boom. The mismatch could effectively delay the production of around 3.3 million battery-powered passenger cars that year, according to the research firm. Without new mining projects, delays could swell to the equivalent of 20 million cars in 2030. Battery-powered buses, trucks, ships, and grid storage systems will also feel the squeeze… [T]he solution isn’t as simple as mining more hard rock — called spodumene — or tapping more underground brine deposits to extract lithium. That’s because most of the better, easier-to-exploit reserves are already spoken for in Australia (for hard rock) and in Chile and Argentina (for brine). To drastically scale capacity, producers will also need to exploit the world’s “marginal” resources, which are costlier and more energy-intensive to develop than conventional counterparts…

Concerns about supply constraints are driving innovation in the lithium industry. A handful of projects in North America and Europe are piloting and testing “direct lithium extraction,” an umbrella term for technologies that, generally speaking, use electricity and chemical processes to isolate and extract concentrated lithium… In southwestern Germany, Vulcan Energy is extracting lithium from geothermal springs that bubble thousands of meters below the Rhine river. The startup began operating its first pilot plant in mid-April. Vulcan said it could be extracting 15,000 metric tons of lithium hydroxide — a compound used in battery cathodes — per year. In southern California, Controlled Thermal Resources is developing a geothermal power plant and lithium extraction facility at the Salton Sea. The company said a pilot facility will start producing 20,000 metric tons per year of lithium hydroxide, also by 2024.

Another way to boost lithium supplies is to recover the metal from spent batteries, of which there is already ample supply. Today, less than 5 percent of all spent lithium-ion batteries are recycled, in large part because the packs are difficult and expensive to dismantle. Many batteries now end up in landfills, leaching chemicals into the environment and wasting usable materials. But Sophie Lu, the head of metals and mining for BloombergNEF, said the industry is likely to ramp up recycling after 2028, when the supply deficit kicks in. Developers are already starting to build new facilities, including a $175 million plant in Rochester, N.Y. When completed, it will be North America’s largest recycling plant for lithium-ion batteries.

The Economic Times also argues that electric cars and renewable energy “may not be as green as they appear. Production of raw materials like lithium, cobalt and nickel that are essential to these technologies are often ruinous to land, water, wildlife and people.

“That environmental toll has often been overlooked in part because there is a race underway among the United States, China, Europe and other major powers. Echoing past contests and wars over gold and oil, governments are fighting for supremacy over minerals that could help countries achieve economic and technological dominance for decades to come.”

Read more of this story at Slashdot.

7
Like
Save

Comments

Leave a Reply

%d bloggers like this: